Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa.

نویسندگان

  • E C Pesci
  • J B Milbank
  • J P Pearson
  • S McKnight
  • A S Kende
  • E P Greenberg
  • B H Iglewski
چکیده

Numerous species of bacteria use an elegant regulatory mechanism known as quorum sensing to control the expression of specific genes in a cell-density dependent manner. In Gram-negative bacteria, quorum sensing systems function through a cell-to-cell signal molecule (autoinducer) that consists of a homoserine lactone with a fatty acid side chain. Such is the case in the opportunistic human pathogen Pseudomonas aeruginosa, which contains two quorum sensing systems (las and rhl) that operate via the autoinducers, N-(3-oxododecanoyl)-L-homoserine lactone and N-butyryl-L-homoserine lactone. The study of these signal molecules has shown that they bind to and activate transcriptional activator proteins that specifically induce numerous P. aeruginosa virulence genes. We report here that P. aeruginosa produces another signal molecule, 2-heptyl-3-hydroxy-4-quinolone, which has been designated as the Pseudomonas quinolone signal. It was found that this unique cell-to-cell signal controlled the expression of lasB, which encodes for the major virulence factor, LasB elastase. We also show that the synthesis and bioactivity of Pseudomonas quinolone signal were mediated by the P. aeruginosa las and rhl quorum sensing systems, respectively. The demonstration that 2-heptyl-3-hydroxy-4-quinolone can function as an intercellular signal sheds light on the role of secondary metabolites and shows that P. aeruginosa cell-to-cell signaling is not restricted to acyl-homoserine lactones.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Designed Small-Molecule Inhibitors of the Anthranilyl-CoA Synthetase PqsA Block Quinolone Biosynthesis in Pseudomonas aeruginosa

The Gram-negative bacterial pathogen Pseudomonas aeruginosa uses three interconnected intercellular signaling systems regulated by the transcription factors LasR, RhlR, and MvfR (PqsR), which mediate bacterial cell-cell communication via small-molecule natural products and control the production of a variety of virulence factors. The MvfR system is activated by and controls the biosynthesis of ...

متن کامل

The role of 2,4-dihydroxyquinoline (DHQ) in Pseudomonas aeruginosa pathogenicity

Bacteria synchronize group behaviors using quorum sensing, which is advantageous during an infection to thwart immune cell attack and resist deleterious changes in the environment. In Pseudomonas aeruginosa, the Pseudomonas quinolone signal (Pqs) quorum-sensing system is an important component of an interconnected intercellular communication network. Two alkylquinolones, 2-heptyl-4-quinolone (H...

متن کامل

Quorum Sensing in Microbial Virulence

Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...

متن کامل

بررسی و شناسایی ژنهای کروم سنسینگ در سویه های سودوموناس آئروژینوزا جداشده از نمونه های بالینی انسانی به روش Multiplex PCR و تعیین مقاومت آنتی بیوتیکی

Background : Pseudomonas aeruginosa is an opportunistic pathogen and the cause of 10% to 15% of ‎nosocomial infections.Virulence genes of Pseudomonas aeruginosa is one of the most ‎aggressive mechanisms and the issue of medical opinion is important. The expression of many ‎genes is controlled and regulated in pathogenic bacteria Pseudomonas aeruginosa gene by a ‎system called Qu...

متن کامل

A bacterial cell to cell signal in the lungs of cystic fibrosis patients.

Pseudomonas aeruginosa is an opportunistic pathogen that is a major cause of mortality in cystic fibrosis (CF) patients. This bacterium has numerous genes controlled by cell to cell signaling, which occurs through a complex circuitry of interconnected regulatory systems. One of the signals is the Pseudomonas Quinolone Signal (PQS), which was identified as 2-heptyl-3-hydroxy-4-quinolone. This in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 96 20  شماره 

صفحات  -

تاریخ انتشار 1999